Defects responsible for the hole gas in Ge/Si core-shell nanowires.

نویسندگان

  • Ji-Sang Park
  • Byungki Ryu
  • Chang-Youn Moon
  • K J Chang
چکیده

The origin of the ballistic hole gas recently observed in Ge/Si core-shell nanowires has not been clearly resolved yet, although it is thought to be the result of the band offset at the radial interface. Here we perform spin-polarized density-functional calculations to investigate the defect levels of surface dangling bonds and Au impurities in the Si shell. Without any doping strategy, we find that Si dangling bond and substitutional Au defects behave as charge traps, generating hole carriers in the Ge core, while their defect levels are very deep in one-component Si nanowires. The defect levels lie to within 10 meV from or below the valence band edge for nanowires with diameters larger than 33 A and the Ge fractions above 30%. As carriers are spatially separated from charge traps, scattering is greatly suppressed, leading to the ballistic conduction, in good agreement with experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge–Si Core–Shell Nanowires

The ability of core-shell nanowires to overcome existing limitations of heterostructures is one of the key ingredients for the design of next generation devices. This requires a detailed understanding of the mechanism for strain relaxation in these systems in order to eliminate strain-induced defect formation and thus to boost important electronic properties such as carrier mobility. Here we de...

متن کامل

Strain and Hole Gas Induced Raman Shifts in Ge-Si(x)Ge(1-x) Core-Shell Nanowires Using Tip-Enhanced Raman Spectroscopy.

We report tip-enhanced and conventional Raman spectroscopy studies of Ge-Si0.5Ge0.5 core-shell nanowires in which we observe two distinct Ge-Ge vibrational mode Raman peaks associated with vibrations in the Ge nanowire core and at the Ge-Si0.5Ge0.5 interface at which a quantum-confined hole gas is formed. Tip enhanced Raman measurements show dramatically increased sensitivity to the modes at th...

متن کامل

One-dimensional hole gas in germanium/silicon nanowire heterostructures.

Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportuniti...

متن کامل

Diameter-independent hole mobility in Ge/Si core/shell nanowire field effect transistors.

Heterostructure engineering capability, especially in the radial direction, is a unique property of bottom-up nanowires (NWs) that makes them a serious candidate for high-performance field-effect transistors (FETs). In this Letter, we present a comprehensive study on size dependent carrier transport behaviors in vapor-liquid-solid grown Ge/Si core/shell NWFETs. Transconductance, subthreshold sw...

متن کامل

Transport modulation in Ge/Si core/shell nanowires through controlled synthesis of doped Si shells.

Appropriately controlling the properties of the Si shell in Ge/Si core/shell nanowires permits not only passivation of the Ge surface states, but also introduces new interface phenomena, thereby enabling novel nanoelectronics concepts. Here, we report a rational synthesis of Ge/Si core/shell nanowires with doped Si shells. We demonstrate that the morphology and thickness of Si shells can be con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2010